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Abstract

Article Info Many practical problems in engineering and science are formulated by Ordinary Differential

Equations (ODE) that require their own numerical solution. Numerous methods, e.g., the

Volume 2, Issue 1, April 2022 Euler method, the modified Euler method, Heun’s method, the Adam-Bashforth method
Received : 01 July 2021 and so on, exist in the context of numerical analysis. Amongst them, the classical Runge-
Accepted : 18 February 2022 Kutta method (RK4) of the fourth order is mostly used. In this paper, we derive the value
Published : 05 April 2022 of different parameters in the formulation of the fourth order Runge-Kutta method explicitly.

The determination techniques are shown stepwise in a straight-forward way. Basically, this
paper provides a survey of previous work on deriving the fourth-order Runge-Kutta formula.
The major goal of this paper is to provide more details on how to formulate the RK4 method
explicitly in order to encourage further research into this method.
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1. Introduction

In numerical analysis, the Runge-Kutta methods were proposed by two German mathematicians, Curl Runge and
Wilhelm Kutta, around 1900 (Butcher, 1996). C. Runge published a paper in 1895 which was an extension of the
approximation of the Euler method in a more elaborate way. Various order Runge-Kutta methods have been used widely
to find the numerical solution of differential equations (Butcher, 2008; Chapra and Canale, 2012). A new version of the
improved Runge-Kutta Nystrom method is applied to solve second-order fuzzy differential equations (Parandin, 2013).
The Runge-Kutta method of order five is used for the numerical solution of #" order fuzzy differential equations based
on the Seikkala derivative with initial value problem (Abbasbandy ez al., 2011; Jayakumar ez al., 2012; Akbarzadeh and
Mohseni, 2011; and Jayakumar et a/., 2015). Four and fifth-order Runge-Kutta methods are applied to solve the Lorenz
equation (Emre, 2005; Fae’q and Radwan, 2002; and Nikolaos, 2009). Implicit and different multistep Runge-Kutta
methods are studied in (Butcher, 1986; Butcher, 1964; and Burrage ef a/., 1980). The fundamental principles of the theory
of differential equations and their numerical solution are discussed by Euler and Coriolis (Euler, 1768; Curtiss and
Hirschfelder, 1952). The early works of the Runge-Kutta method are discussed in the papers by Runge (Runge, 1895),
Kutta (Kutta, 1901) and Nystrom (Nystrom, 1925). The fundamentals of multistep Runge-Kutta methods are published
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by Adams and Bashforth, Dahlquist and Moulton (Dahlquist, 1956 and 1963). Recently, some work on the Runge-
Kutta method is seen, e.g., Mechee and Yasen (2017), Geeta and Varun (2020) applied generalized RK integrators for
solving ordinary differential equations. Computational techniques based on the Runge-Kutta method of various
orders and types for solving differential equations are discussed by Vijeyata and Pankaj (2019). Explicit fourth-
derivative two-step linear multistep methods have been studied by Wusu and Akanbi (2017) to solve ordinary
differential equations.

From this brief survey, it is clear that Runge-Kutta methods, as well as their various versions, are used to solve
differential equations in a variety of fields. The formulas for the Runge-Kutta method can be found in most textbooks
(Goel and Mittal, 1998; Jain and Iyenger, 2014). Some of the books and publications provide the Runge-Kutta method
in a broader context and do not go into depth about the approach in its ultimate form (Chapra and Canale, 2012). Butcher
presents the parameter values of the Runge-Kutta method in a tableau, but in a compact manner (Butcher, 2008). The
goal of this study is to describe in detail how to derive various arbitrary parameters using the most widely used fourth
order Runge-Kutta method. The majority of the information in this publication is sourced mostly from (Butcher, 2008).
The paper is organized as follows: Introduction is given in Section 1. A detailed description of calculating the different
parameters in the formation of fourth order Runge-Kutta method is given in Section 2. Sections 3 through 4 contain the
discussion and conclusion.

2. Derivation of the Parameters of Fourth Order Runge-Kutta (RK4) Method

The basic idea of fourth order Runge-Kutta method is to find the numerical solution of the differential equation

Y'=106), y(x) =, (D)
There exists different form of Runge-Kutta method but all can be put in the generalized form as:
Vst =V T (X5 3,) -2)

where f(x,,y,) is an increment function which can be written in general form as:
f=ak +a,k, +ak,+---+ak, ~(3)

The g,’s and £, ’s in Equation (3) are arbitrary constants where ,’s are given by:

kl :f(xm’ym)

k, = f(x, +uh,y, +v,kh)
ky=f(x, +uh,y, +v,kh+v,k,h)
. (4

k

n—1

k,=f(x, +u, by, +v,  kh+v, o kh+-+y

n—1,n—1

h)

It is clear from Equation (4) that each is a functional evaluation and £,’s is in recurrence relationship. A more used
general form of the fourth order Runge-Kutta method of Equations (3) and (4) is given by:
y(x+ h) = y(x)+ ak, + bk, + ck, + dk, -(5)

where kl. ’s are

kl :hf(x’y)
k, = hf (x + mh,y + mk;)
ky, =hf (x+nh,y +nk,) ...(6)

k, = hf (x+ ph,y + pk;)

We derive the arbitrary constants a, b, ¢, d, m, n, p such that Equation (5) agrees with the Taylor series solution up
to the term A*.

From Equation (1) we get
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_dy
y'i=—=fxy)=f A7)
dx
Differentiating Equaiton (7), we derive

yu:i(ﬂj: df(x’y) :gﬁ_FQQ

dx\ dx dx ox dx Oy dx -(8)
which implies that
y“:f; +f.f"y
=E, .9

where E, :fx+f,fy.

Differentiating Equation (9) another times

y"= () = (@) + ), (50)

LD e DED o LD
X X

7, dx+5f dy {%@Jr%.d_y}tfy(ﬂJrffy)

T ox dx 53 1 ox dx oy dx

=fu s+ fo S S W Sy S LS+ 1)

which implies that
ym: (f,\:x + 2f'f;cy + fz‘f:vy) + f;/ (f:( + f‘fy) "'(10)
Let us consider E,=f. + 2f_fxy + fz,fyy , thus (10) becomes
y'=E, + [ ,E, -(11)

Again differentiating Equation (10), we derive

y = di(y”’) = b2 S PSS L4 1)
X dx

:%(fxx+2f.fxy+f2.fyy+fx.fy 1S
=R (P A 1 h )+ G 1)

dx
LB L) Bd g, L p 1) e 1u2r (1)

ox dx Oy
{f%(mwﬁ%(ﬁ)Hf Y orppd (f)}

0 of., o[ 9, o,
=[fxxx-1+fm-f]+2{ﬂv(fx +f.f_‘,)+f[%.%+§;.%ﬂ+|:2f(fx +f I+ (g_x%Jrg_y%H

o, dx o, dy o, dc o, dy f, dx of, dy
+{f’(8x'dx+6y'dxj+fx(6x'dx+ay'dxﬂ {f (. +ff)+2ff(a dx+ay'dxﬂ
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=+ S S+ [ 20 Sy 420 Sy + 20 Sy + Sy ]

(@I A2 SN+ L Sy + L L) [F [ s+ oD+ 1Sy + £ ) ]
[ S S+ L A2 S S+ £ )]

=fm+3f.fny+3f2fw+f3fm_+fyfn+2f.f},f”,+f2fyfyy+3fxfw+3f.fy.fw+3f.fx.fw
+312f S+ LS+ ST

=S #3S S #3L Sy # LS )+ L fu 42 S + L2y ) S S A S SN S + LS )+ S S+ 11

Therefore,

VO = (S #3S g #3S S+ Lo )+ (S 4 20 S+ 121, ) 43( S+ S 1) S + 1)

(12
L2 (L1 1) (12
Again let :(fm +3f S +3f2fxyy +f3fyw),thusEquation(lZ)becomes
y(iV) =E3 +.ny2 +3El(-fxy +f'fyy)+fV2E1 (13)
Now, the Taylor’s series is,
’ h2 " h3 m h4 (iv) 5
y(x+h)=y(x)+hy (x)+§y (x)+;y (x)+Zy (x)+ O(h ) -(14)
Putting the values of Y '(x), ¥"(x),»"(x) and y([v) (x) in Equation (14), we get
h2 3 h4 5
y(x+h):y(x)+hf+7El +Z(E2 +nyl)+£[E3 + f,E, +3E1(fxy +ﬁ"yy)+fy El}rm
n n /N n ht 1 n -(15)
:y(x)+hf+?El +ZE2 +2—E3 +nyE1 +ﬁny2 +§h4 (fxy +ﬂyy)E1 +§fy2E1 +oe
Here,

k,=hf(x,y)=hf
k, = hf (x + mh,y + mk,)

Now, expanding the double variable function f'(x + mh,y + mk,) by Taylor’s series we get,

2 3
0 0 1 0 0 1 0 0
f(x+m}l’y+mkl):f(x’y)+(mh8x+mkl@/jf(x’y)+2!(m}l(3)c+rrlkl6)/} ‘f(x’y)+3![mh6x+mk18yj S y)+--

1
= f +(mhf, +mk,f,) +5(m2h2 fo+2m’ e f + Mk )
+ g(m3h3 fw ¥ 3R mk £+ 3mhm’ K £, + MK )+ -

xxy 3y Wy

Substituting k, = h.f in the above equation
— h 1 2h2 2 2
=famh(fo S 1)+ Sm B (fu+2 Sy + 171,

1
+gm3h3(fm+3f.fm,+3f2fm+f3,gyy)+---

1 1
= f +mhE, +5m2h2E2 +gm3h3E3 4o
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Therefore,
1 2712 1 3713
f(x+mh,y+mk) = f+mhE, +Em h°E, +gm WE, +- .(16)
Hence,
1 2712 1 373
k,=h f+th‘+§th2+Eth3+'” -(17)

Again, given that
ky = hf (x +nh,y + nk,),

Further expanding f(x + nh, y + nk,) in Taylor’s series, we get

2 3
0 0 1 0 o 1 0 0
xX+nh,y+nk,)=f(x,y)+| nh—+nk, — | f +—| nh—+nk, — +—| nh—+nk, — + .-
f( y ») = f( y)[ ™ 2ayjf 2!( o 2any 3![ o zay]f

= [ +nhf, +nk,f, +%(n2h2fxx +2n°hk, f,, + k3 f,,)

+ é(”ﬁh}fxxx + 3n2h2nk2f)er + 3nhn2k22fxw + n3k23f—v-"y)+

Now, substituting this value of k, in the above equation we get

S (et nhy+nky) = f +nhf, + (nhﬁ’y I £+ Sl E o nf HE, +]
1| 5, 2 2 1 5, |
+5 n°hf. +2nhf | hf + mh E1+5m h E2+€m WE, +--
1 1 2
+n2fyy(hf+mh2E1 +5m2h3E2 +gm3h4E3 +J :l
Ir 33 372 ) 1 ,.; 1 5.,
+g[n B o #30°W L | f 4 mB*E, + i’ Eytom WE, + -

2
+3n’hf,, [hf+ mh’E, +%mzh3E2 +%m3h4E3 +j

3
+n3fm(hf+mh2E1 +%m2h3E2 +%m3h4E3 +) }

Collecting the orders of O(h’)

f(x+nh,y+nk,)= f +nhF +lh2 n’FE, +2mnf F )+
2 1 2 2 y4
(18
%hS(n3F3 +3m’nfF, +6mn2(fry+ﬁ‘yy)Fi)+--- 18

Therefore,

1 1
ky = h[f + nhF, +5h2 (nze +2mnf ) +gh3 (}13F3 +3m’nf, F, + 6mn’ (fxy + 17, )F1 ) 4 } (19)
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Again, given that
k, = hf(x—l— ph,y + pk3)

Expanding f (x +ph,y+ pk3) Taylor’s series we get,

2 3
0 0 1 0 0 1 0 0
x+ ph,y+pk)=f(x,y)+| ph—+ pk,— | f +—| ph—+ pk; — +—| ph—+ pk,— +ee
S (x+ph,y+ pk;)= f(x,) (p . pgayjf 2![17 . psany 3!(17 . p3any
1

:f+phﬁ+pk3fy+Ep2(h2ﬂ_x+2hk3ﬂ_y+k§fyy)+

1

A P (B fo + 30K [ + 30K [y + K £, )+

Substituting the value of &, in the above equation we get

SOt phy pl) =1+, +pﬁ[if S+ (1, 2 < s i 6, +ﬁ;)a)+...}
+;[p2h2fa+2p2h(ly’+nhli +%h3(n2Ez Jrzrrnnyl)Jréh“(nsE3 +3ninf E, +6m"2(fxy+ffvy)El)+"'ﬂ

+;[p2fw(’f+nhﬁ +%h3(n2E2 +2rnn]j,1~:1)Jréh“(nﬂa‘3 +3ntnf, By +6mrt’( £, +ﬁ”W)El)+...j }

+é(p3h3fm +3pZ},2y‘m(thrnhE1 +%h3(n2E2 +2nyE‘)+éh4(n3@ +3nt'nf E, +6””72(fxy +ﬁ;y)El)+' . -j+- J

Now on simplification

1
f(x+ ph,y+ pky)= f + phE, +§h2 (sz2 +2pnny1)+
1.5 3 > ) ) -(20)
gh (p E, +3n pny2+6np (fnyrﬁ“yy)El+6mnpny1)+---

Now, substituting this value in the k, = Af (x + ph,y+ pk3) equation we get,

k, = h[f + phE, + %/ﬁ (P*E, +2npf E,) +%h3 (P°E, +3n° pf, B, +6mp (£, + ff,, ) E, + 6mnpf B, )+ }

.21
Substituting the values of &, k,, k;,k, in Equation (5) we get,
y(x+h)y=y(x)+(a+b+c+d)hf +(bm+cn+dp)hE, + %(bm2 +cn’ +dp’ )h3E2
1 3 3 3\ 7.4 3 1 2 2 4
+g(bm +cn’ +dp )h E, +(cmn+dnp)h’ f E, +5(cm n+dn p)h S E, 22

+(cmn® +dnp® \1* (£, + ff,, ) E, +dmnph* fE, + O(h°)
Comparing the eEuations (15) and (22) we get
a+b+c+d=1

1
bm+cn+dp=5
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at+b+c+d=1

bm+cn+dp= 1
2
bm* +cn® +dp’ =%
bm’ +cn3+dp’ =%
cmn +dnp = 1
7=
cmn’® + dnp’ =é ..(23)

cm’n+dn’p = L

12

1

dmnp =—

Y

Equation (23) is an overdetermined system of eight equations and seven variables. Using the following Maple

command

RK _Solution = solve({a+b+c+d =1, b.m+c.n+af.p=%,bm2 +en’+d.p’ =§,b.m3 +en’ +d.p’ =i,

Jda,b,c,d,m,n,p});

1 1 1 1
emn+dnp=—,cmn’*+dnp*=—,cm*n+dn*p=—,dmnp=—
P=% Py T Py

and the classical solution is

1 1 1 1 1
RK Solution={a=—,b=—,c=—,d=—m=—n=—,p=1
_ Solution {a6 303 6m2n 2p } (24)
Putting these values in the Equations (5) and (6) we get,
1
y(x+h)= )’(x)+g(k1 +2k, + 2k, +k,), -(25)
where,

kl :hf(x’y)

h 1
ky=hf| x+—,y+—k

2 f(x > y ) 1)

ky =hf x+ﬁ,y+lk2 ...(26)

2 2

3. Discussion

There are numerous Runge-Kutta procedures have been posed and developed. In the literature, there have been
several theoretical and numerical investigations dealing with the solution of differential equations of various orders.
Amongst them, the Runge-Kutta methods are a set of implicit and explicit methods for approximating the solutions of
ODEs in numerical analysis. This reason motivates us to study and derive the RK methods more directly. Notice that in
Equation (2) the increment functions f'(x, ,y, ) is utilized and the &’s in Equation (4) are in recurrence relationships.
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The Equations (5) and (6) exhibits of using a weighted approximations of where the weights are a’s and m, n, p are
arbitrary constants. The derivation procedures of these constants are shown unambiguously stepwise. The mathematical
computational technology Maple is used to find the solution of the overdetermined system of equations.

4. Conclusion

The main purpose of this work is to provide more details about formulating the fourth order Runge-Kutta method in
order to motivate the study of this method more deeply. Our goal in writing this review is to have a better understanding
of the underlying principality of the RK method, as well as enhance its analytical capabilities. The work is particularly
important for understanding the overall formulation of the fourth order Runge-Kutta method.
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